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A B S T R A C T

In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and “greener” but also need to be developed at on much
shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent
progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following
topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization
methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto
Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.
1. Introduction

The aerodynamic design of turbomachinery blades is a complex task
due to the complicated flow phenomena and the interactions between
various disciplines. The traditional trial-and-error design method de-
pends strongly on the experience of the designers so the process cannot
lead to globally optimized design. Moreover, these processes usually
require very long design cycles.

The rapid development of computational capabilities has led to the
increasing use of numerical design methods coupling numerical simula-
tions and optimization methods to release the design process from
depending on the designers' experience. Various optimization frame-
works have been developed based on CFD simulations. Optimization
methods can generally be divided into stochastic models and gradient-
based models. The stochastic model globally searches for the optimum,
while the gradient models use an optimization routine based on gradient
information.

Besides the optimization algorithms themselves, the design platform
also used the design of experiment (DOE) method, Surrogate Model and
Data-Mining method. The design of experiment step is the design of any
task that aims to describe or explain the variation of information for
conditions that are hypothesized to reflect the variation. The term is
generally associated with actual experiments in which the design in-
troduces conditions that directly affect the variations, but may also refer
to the design of quasi-experiments, in which natural conditions that in-
fluence the variation are selected for observation.

Optimization algorithms, especially the stochastic models, are very
computationally expensive so they cannot be easily used in practical
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applications. Surrogate models have been used to approximate the
computationally expensive functions to provide expensive reasonable
predictions to the real functions. The Response Surface Method, Kriging
Model and Artificial Neural Networks are popular surrogate models for
turbomachinery design. The challenge of surrogate modeling is to
generate a model that is as accurate as possible while using as few
simulation evaluations as possible.

The difficulty for multiple objective problems is how to get useful
design information from the Pareto-optimal solutions. Thus, data mining
techniques can be a powerful tool to address this issue. Data mining is an
interdisciplinary subfield of computer science that searches for patterns
in large data sets involving methods at the intersection of artificial in-
telligence, machine learning, statistics, and database systems. The overall
goal of the data mining process is to extract information from a data set
and transform it into an understandable structure for further use.

2. Optimization of turbomachinery designs

Aerodynamic design optimization methods can be distinguished into
inverse and direct designs. Inverse design methods specify a pressure
distribution to develop a profile shape by iterative modifications of the
blade shape. The computational cost is proportional to a small number of
flow analyses and is, thus, comparably inexpensive. Inverse design
methods can be combined with an optimization method in an efficient
design process [1–3]. However, the pressure distribution may pass
through a number of iterations to obtain an acceptable profile. This
approach relies strongly on the experience of the designer who needs to
specify a pressure distribution which fulfills the various aerodynamic
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design aspects in terms of the flow turns, boundary layer properties and
flow losses which also performs well for off-design conditions. Another
shortcoming of the inverse design method is how to integrate the geo-
metric and mechanical constraints. Unlike with inverse design process,
the direct design method optimizes the shape based secondary aero-
dynamic properties like the aerodynamic losses with the computational
cost involving many single flow calculations.

The optimization algorithms used with the direct design method are
mainly the gradient based methods and the stochastic algorithms.
Gradient-based methods rely on derivative information for all the ob-
jectives and all the constraints to determine the optimization search di-
rection. These methods start with a single design point and use the local
gradient of the objective function with respect to changes in the design
variables to determine a search direction by using methods such as the
steepest descent method, conjugate gradient method, quasi-Newton
techniques, or adjoint formulations. These methods are efficient and
can find a true optimum as long as the objective function is differentiable
and convex. However, the optimization process can sometimes lead to a
local, not necessarily a global, optimum close to the starting point.
Furthermore, such computations can easily get bogged down when many
constraints are considered.

Genetic Algorithms and Evolutionary algorithms are typical stochas-
tic optimization algorithms. These methods are robust optimization al-
gorithms that can cope with noisy, multimodal functions, but are also
computationally expensive in terms of the necessary number of flow
analyses required for convergence. They start with multiple points
sprinkled over the entire design space and search for true optimums
based on the objective function instead of the local gradient information
by using selection, recombination, and mutation operations.

Fig. 1 shows a typical optimization flowchart that includes the
parametric modeling, the N-S solver, the optimization algorithm and data
mining. The geometry is first parameterized and the shape is modified by
changing key parameters. The blade shape is inserted into a flow region
with the N-S equation solver then used to solve for the flow around the
blade. Then, the results are post-processed by the data mining tool to
identify the flow mechanisms. The optimization algorithm then predicts
the optimum combination of parameters that are transferred to the
parametric model with the flow solver used to validate this design. The
optimization process continues until it satisfies the design criteria.

3. Optimization using stochastic methods

3.1. Parameterization

The geometric representation of the blade profile is an important part
of any shape optimization procedure which directly determines the
number of design variables in the optimization process. The parameter-
ization requirements are:

1) Have sufficient flexibility to cover the entire search space, even for
“non-traditional” shapes.

2) To minimize the number of design parameters.
Fig. 1. Optimization framework.
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3) To avoid curvature discontinuities at the junctions of curves through
local approximation or interpolation models.

4) To preferably include design variables linked directly to the con-
straints, while excluding design variables which have little effect on
the aerodynamic performance of the shape.

Basically, the blade parameterization method is based on conven-
tional multi-section blade parameterization [6,41,42] which defines the
camber line, the stacking axis, the thickness distributions and other pa-
rameters. The design parameters are controlled by Bezier
[4,11,12,20,75], B-Spine [5,76,77,78], and even Non-Uniform Rational
B-Spine (NURBS) [6–10] shapes. Often, the blade is described by a
number of profile sections on the same conical surfaces. Then, the
spanwise profiles are connected by the stacking lines. A blade is
considered acceptable if these quantities are continuous along the blade
span without turning points. Each blade can be decomposed into N points
(N-1 segments) using third-, fourth- or fifth- order splines, Bezier curves
or circular arcs [74]. These methods can also be combined with the in-
verse design method. The detailed blade geometry is then calculated
using the through-flow design or blade formatting design methods
[1,2,3]. The advantage of this method is that the aerodynamic parame-
ters are the design variables so the design parameters more closely
correlate with the flow field to give more direct control of the aero-
dynamics. Fig. 2 shows an airfoil parameterization based on NURBS
curves with the parameterized airfoil fitting well with the original shape.
However, high turning or high curvature blades cannot be easily defined
by lower order splines, so Hicks and Henne shape functions [160] have
been used as an alternative. Recently, Wang et al. [161] rejected the
traditional blade aerodynamic design and used a trumpet-shaped flow
path which gradually turned to the desired angle.

The blade optimization methods also need to parameterize the fine
blade features such as the fillet near the blade root with a limited number
of design variables. Thus, advanced parameterization methods are
becoming more important in the optimization process.

3.2. Design of experiment

In the simplest form, the DOE process predicts the outcome by
introducing a change in the preconditions. Experimental design involves
not only the selection of suitable predictors and outcomes, but also the
planning of the experiment for statistically optimal conditions given the
constraints on the available resources. The experimental designs seek to
provide the maximum information with the minimum number of design
experiments to reduce the number of computationally intensive design
calculations.

The Central Composite Design method (CCD) is one of the most
widely used experiment design methods [15]. CCD composite designs
offer an efficient alternative to second-order response surface models
[44]. However, the number of points in the CCD process increases
exponentially with the number of design variables, so this is inefficient
for high dimensional design problems [45]. The alphabetical optimal
designs, especially the D-optimal designs, have also been widely utilized
[44,45,46,47]. The D-optimal process requires smaller number of designs
than the CCD, since the CCD is over-determined and needs more exper-
iments than necessary. However, D-optimal has only a model-dependent
D-efficiency and does not address the prediction variance.
Fig. 2. Airfoil parameterization using NURBS curves [8].
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Generally, DOE uses two types of simulation models, stochastic
models and deterministic models. Since computer experiments involve
mostly systematic errors rather than random errors as in physical ex-
periments, a good experimental design for deterministic computer ana-
lyses tends to fill the design space rather than to concentrate on the
boundary [28,29]. The space filling methods include orthogonal arrays
[48,49] and various Latin Hypercube Designs (LHD) [14,50,51]. The
LHD designs were found to more accurately estimate the means, vari-
ances and distribution functions of an output than random sampling and
stratified sampling. Moreover, LHD ensures that each of the input vari-
ables is represented over portions of its range. Also, LHD can cope with
many input variables and is less expensive computationally.

LHDwas first introduced byMcKay et al. [14] as a space-filling design
process that provides more information within the design space and can
be used with approximate computer experiments which mainly have
system errors rather than random errors. The LHD process is relatively
straightforward with the range of each input design variable divided into
n intervals with each observation on the input variable made in each
interval using random sampling. Thus, there are n observations for each
of the d input variables. One of the observations on variable x1 is
randomly selected (each observation can be selected equally), matched
with a randomly selected observation on x2, and so on through xd to build
a design vector, X1. One of the remaining observations on x1 is then
matched at random with one of the remaining observation on x2 and so
on to get X2. The procedure is followed for X3, X4, …, Xn, resulting in n
LHD sampling points.

In real designs, some combinations of the variables are not feasible or
can even crash the CFD code. However, LHD allows the flexibility to
adjust a variable some without undermining the fundamental properties
of the LHD sample [43]. Various optimal LHDs have been proposed based
on minimax, minimum mean square error, maximum entropy or
orthogonal algorithms. The LHD sample size can be controlled by the
designer based on their time, budget or other limitations. There is no
comprehensive theory about the number of design points required to
construct the response surface models with LHD. Unal et al. [44]
mentioned that the number of experimental samples for building
response surface models with LHD should be 20–50% of the number used
with D-optimal designs. Fig. 3 compares the Full Factorial method using
33 variable combinations with the LHD sampling method using only 3
samples. LHD methods have been frequently coupled with surrogate
models for optimization of turbomachinery designs [52–59].

Wang et al. [60] mentioned that the sampling strategy should be
based on the function to be approximated. Thus, the sampling strategy
should generate a minimum number of samples so that the metamodel
accurately reflects the “black-box” function in the area of interest. This
means that the sampling process should be iterative, adaptive and pro-
gressive, as has been shown in some publications [125,126].
3.3. Surrogate model

For complex systems, the design process is a daunting optimization
task involving multiple disciplines, multiple objectives and
Fig. 3. Comparison of the Full Factorial and Latin Hypercube datapoints.
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computationally intensive models. The total time consumed is always
unacceptable in practice. Despite continual advances in computing
power, the finite element (FE) and finite difference codes are very
complex. Thus, approximation-based optimization methods have
attracted much attention in the past 20 years [60]. These optimization
methods approximate the objective functions by simplified analytical
models. The simple models are often called surrogate models or meta-
models. Surrogate models approximate computationally expensive
functions with computationally orders of magnitude cheaper models
while still providing reasonably accurate approximations to the real
functions. Artificial Neural Network (ANN), Response Surface Model
(RSM) and the Kriging Model models are also widely used in turboma-
chinery applications.

3.3.1. ANN
ANN algorithms use a neurological model with learning from expe-

rience, making generalization from similar situations and judging states
[16]. The ANN method began in the early 1940s and became practical in
the mid-1980s. Nowadays, there are many different types of ANN
methods including the multilayer perceptron (MLP) (which is generally
trained using the back-propagation of the error algorithm), learning
vector quantization, and the radial basis function (RBF). Some ANNs are
classified as feed forward while others are recurrent depending on how
the data is processed through the network. ANN types can also be clas-
sified based on their learning method with some ANN using supervised
training, while others are self-organizing.

The most widely used ANN is the Back Propagation Neural Network
(BPNN). The first step is to initialize the weight and bias factors using
small random values. Then, the input vector for the first training sample
is input into the network input with the signal propagated to the output
layer. Generally, the output vector provided by the network does not
correspond to the desired output vector associated with this input vector,
which is called the forward training phase. The error between the real
and the desired output vector is back-propagated to the network input
with this error used to adjust the connection weights to minimize the
error. The learning process requires a set of input/output vectors that will
be sequentially input to the network input/output layers. This process of
presenting the input and output vectors to the network and updating the
weights is repeated for each training set until the weights converge,
which is called the backward process.

Fig. 4 shows the basic structure of a BPNN. In the forward phase, the
sums of the input contributions are connected to the nodes in the next
layer by a sigmoidal transfer function. The standard sigmoid transfer
function, fs, is:

fsðxÞ ¼ 1
1þ e�x

(1)

In the backward propagation process, the least mean-spare error of
the output is used to evaluate the convergence:
Fig. 4. Artificial neural network configuration [17].



Fig. 6. Structure of the Radial Basis Neural Network [16].
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E ¼
XNs

i¼1

XNo

k¼1

�
dik � yik

�2 (2)

where Ns is the number of samples, No is the number of outputs, dik is the
value of the kth output of the ith sample and yik is the corresponding
approximated output value. The approximation accuracy of the BPNN
not only depends on the number and quality of the training samples, but
also on the neural network topology [17]. Although a BPNN can
approximate any continuous functions in theory, the convergence of the
learning process does not guarantee that the network correctly predicts
the actual function. Fig. 5 shows how a network with 2 hidden layers
gives better results for the non-linear function than a network with 1
hidden layer [17,61].

Radial Basis Neural Networks (RBNN) is an alternative to the more
widely used BPNN that requires less computer time for network training.
An RBNN consists of an input layer, a hidden layer, and an output layer.
The nodes within each layer are fully connected to the previous layer.
The input variables are each assigned to a node in the input layer and
pass directly to the hidden layer without weights. Thus, each hidden
node receives each input value unaltered. The hidden nodes contain the
Radial Basis Functions (RBFs) which are also called the transfer func-
tions. An RBF is symmetric about a mean or center point in a multidi-
mensional space. The RBNN has a number of hidden nodes with RBF
activation functions connected in a feed forward parallel architecture.
The second layer of connections is weighted with the output nodes
analyzed using a simple summation. Fig. 6 describes the
RBNN framework.

The RBF parameters are optimized during the network training. These
parameters are not necessarily the same throughout the network nor are
they directly related to or constrained by the actual training vectors.
When the training vectors are presumed to be accurate and a smooth
interpolation is desired between them, then linear combinations of the
RBFs which give no error in the training vectors. The RBNN has a faster
training speed than the BPNN [19] and allows for easier optimization
since the only parameter that can modify the network structure is the
number of neurons in the hidden layer.

Wang et al. [17] usedmulti-objective optimization of turbomachinery
designs based on an improved NAGA-II and BPNN. Bellman et al. [18]
improved the GA efficiency with the BPNN method. Other similar ap-
plications of BPNN are published in Ref. [20,61–63]. Many other re-
searchers have used RBNN based optimization for turbomachinery
designs. The RBNN method based optimization procedure was used by
Huppertz et al. [64]. The RBNN method was coupled with the response
surface method for turbomachinery design by Rai and Madyavan [21].
Fig. 5. Artificial neural networks with 1 and 2 hidden layers [61].
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Kim et al. [65] designed a centrifugal compressor impeller using RBNN.
Industrial applications of the ANN methods were reviewed by Meireles
et al. [16].

3.3.2. Polynomial response surface method
The basic RSM process involves selecting a number of design points at

which the computationally expensive function is evaluated. Then, after
these points are analyzed, response surfaces are constructed for the
functional relationships between the design variables and the objective
functions. A regular optimization procedure is then applied to the
response surfaces to find optimal solutions.

RSM uses low-order polynomial approximations in place of compu-
tationally intensive simulations. The second order model is widely used
due to its flexibility and ease of use [22,26]. A second-order response
surface model with N variables can be written as:

y ¼ β0 þ
XN
i¼1

βixi þ
XN
i¼1

βiix
2
i þ

XXN
i≠j

βijxixj þ ε (3)

where xi are the predictor variables, β are the regression coefficients, and
ε denotes the total error that is the difference between the actual and the
predicted response. The coefficients are typically estimated using a
method of least squares regression. Assume that the prediction error at
design point xi is defined as

ei ¼ yi � yi
∧

(4)

where yi
∧

is the predicted value. The adjusted Root Mean Square (RMS)
error is then

σE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

e2i =N

vuut (5)

Several statistical measures used to evaluate the RMS result are the
coefficient of determination statistic, R2, the adjusted statistic, R2

adj, and
the root mean square error, σ. Their definitions involve partitioning the
total sum of the squares into a sum of the squares due to the model and a
sum of the squares due to the error,

σT ¼ σR þ σE (6)

where σT is the mean of the response and σR is the sum of the squares due
to the model. The coefficient of determination statistic is

R2 ¼ σR
σT

¼ 1� σE
σT

(7)

which is the proportion of the variation in the response around the mean
that can be represented by the model and this is similar to the ANOVA
idea that will be discussed in section 5.1. A value of 1 means a perfect
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model with no error while an R2 of 0 means that the prediction has a
prediction capability worse than the overall response mean method. The
adjusted coefficient, R2

adj, can be defined as

R2
adj ¼ 1� N � 1

N � P

�
1� R2

�
(8)

where P is the number of coefficients. This is a better measure than R2 in
which it does not increase when additional parameters are added. Thus,
the modified RMS is

σadj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � P

r
σE (9)

When there are not enough extra data points to build the RSM, the
predicted residual error sum of squares (PRESS) statistic is used to predict
the RSM performance. The residual is obtained by building the RSM over
the design space after eliminating one design point from the training set
and then comparing the RSM estimated value with the expected one.
PRESS is then given by

PRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
yi � byi�2.

N

vuut (10)

where byi is the value predicted by the RSM with the ith point excluded
from the process. The modified model is regarded as good if this value is
close to σadj.

The RSM have been widely used to optimize turbomachinery de-
signs. Jang and Kim [66] used this method to optimize the shape of a
stator blade in a single-stage transonic axial compressor. The blade
optimization used the RSM with a 3D N-S analysis. Papila et al. [70]
combined the RBNN with a polynomial-based RSM for global shape
optimization of a supersonic turbine blade with similar applications in
the literature [3,22,25,26,71,72]. The RSM has also been applied for
data mining based on the trade-offs among objective functions [67].
Reliability-Based Design Optimization (RBDO) has based the RMS pre-
diction interval on the Moving Least-Squares Method and Sensitivity
(MLMS) [68,69].

3.3.3. Kriging model
The RSM are generally second-order polynomial models that have

limited capability to accurately predict nonlinear results. Higher-order
models are more accurate with nonlinear problems, but may be unsta-
ble. Kriging models show greater promise for accurate global approxi-
mations of the design space [26,27,30–33]. They are flexible due to the
wide range of correlation functions which can be used to build the
approximation framework. Thus, Kriging models can accurately predict
both linear and nonlinear functions. An advantage of the Kriging model is
its ability to reduce the number of needed parameters if the database is
small. Thus, the model can be successful even if there are less training
members than design variables [34]. Kriging models combine a global
model with localized departures as:

yðxÞ ¼ fðxÞ þ ZðxÞ (11)

where y(x) is the objective function, f(x) is an approximation function
which is usually a polynomial function and Z(x) is a stochastic function
with zero variance and nonzero covariance. When f(x) globally approx-
imates the design space, Z(x) creates deviations. The Z(x) is given by:

Cov½ZðxiÞ;ZðxjÞ� ¼ σ2R½Rðxi; xjÞ� (12)

where R is the correlation matrix and R ðxi; xjÞ is the correlation
function of any two of the N data points xi and xj. The correlation
function R ðxi; xjÞ can be specified by the Gaussian correlation function
of the form
5

Rðxi; xjÞ ¼ exp

"
�
XN
k¼1

θk
��xik � xjk

��2# (13)

where θk are the unknown parameters to fit the model, and xik and xjk are
the kth components of points xi and xj. Predicted values of by are given by

by ¼ bβ þ rTðxÞR�1
�
y� f bβ� (14)

where rTðxÞ is the correlation vector between untried x and sampled data
points {x1, …, xN}:

rTðxÞ ¼ �
R
�
x; x1

�
;R

�
x; x2

�
;…;Rðx; xNÞ	T (15)

Here bβ is estimated using

bβ ¼ �
f TR�1f

��
f TR�1f

��1
f TR�1y (16)

The variance bσ is given by

bσ2 ¼
h�
y� f bβ�TR�1

�
y� f bβ�i.N (17)

Finally the θk used to fit a Kriging model can be obtained by

max ØðθkÞ ¼ ��
Nln

�bσ2�þ lnjRj	
2ðθk >0Þ (18)

where both bσ2 and jRj are functions of θk. Following the above approach,
the Kriging model was built successfully. Simpson et al. [27] investigated
the use of Kriging models as alternatives to second-order polynomial
response surfaces for constructing global approximations in the design of
an aerospike nozzle. Their error analysis showed that both the response
surface and Kriging models yielded comparable results, meaning equal
prediction level for the multidisciplinary design optimization. However,
the Kriging models offer slightly more accurate approximations in terms
of the prediction errors. Aulich and Siller [35] compared neural networks
and Kriging models for optimizing a fan stage. Unlike the neural network,
one benefit of Kriging models is that they are directly coupled with the
database. In addition, neural networks are rather complex due to the
many training weights. Their optimization process always used the
Kriging model and restarted the neural network when the optimization
process stagnated.

Li and Padula [36] and Queipo et al. [23] gave comprehensive re-
views of various surrogate models used in the aerospace industry. Jin
et al. [39] compared various surrogate models based on several defined
criteria, including the prediction accuracy, efficiency, and robustness.
They concluded that the polynomial response surfaces can be used to
approximate lower-order nonlinear problems, while the Kriging models
should be used for lower-order nonlinear problems in high dimensional
design spaces and neural network should be used for higher-order
nonlinear problems.

Zerpa et al. [37] assembled various surrogate models to construct a
weighted average surrogate model. Goel et al. [38] then extended the
utility of the ensemble of surrogates with weights associated with each
surrogate model based on the individual error. They demonstrated that
the best surrogate can change when the DOE method is changed while
the weighted average surrogate model showed relatively low sensitivity
to the choice of the DOE. Shahpar [160] used the Midrange Approxi-
mation Method (MAM) to solve large design optimization problems with
the approach based on the assembly of multiple meta-models into one
model using linear regression. The multiple surrogate model in general
outperformed the single surrogate model in terms of the errors with
much more robustness. Various multiple surrogate models have been
used for turbomachinery optimization in the literature [40,160,162].

3.3.4. Gradient-enhanced kriging
It is straightforward that the computation cost can be reduced with
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the gradient information. There are several ways of implementing
Gradient-Enhanced Kriging (GEK). Fig. 7 shows the prediction compar-
ison of the Rosenbrock function based on Kriging model and GEK model
and it is apparent that GEK outperforms Kriging for the same number of
samples. The indirect GEK uses the gradient information to provide
additional data to the observation results with defining a small but finite
step size [194]. However, the direct GEKmodifies the prior covariance or
changing the prior covariance matrix with appending the partial de-
rivatives to observation results [195,196]. The main advantages of direct
GEK over indirect GEK are: 1) direct GEK doesn't need choose the step
size; 2) the observation uncertainties can be included for direct GEK; 3)
direct GEK is more robust to poor conditioning of the matrix.

The GEK model based on adjoint CFD solver was used to optimize a
counter rotating turbofan in Ref. [204]. The results showed that a
considerable improvement of the fitness function approximation was
taken into account when the sensitivity information was taken into ac-
count. A design with higher isentropic efficiency at the aerodynamic
design point was created after that. The GEK has also been developed to
solve the 2D airfoil drag minimization problems by Yamazaki
et al. [205].

3.3.5. Support vector machine
Support vector machines (SVMs) are widely used in machine learning

to analyze data used for classification and regression analysis. In the
example of point classification in space, SVM model separated the cate-
gories by a clear gap that is as wide as possible. SVM can efficiently
perform a non-linear classification using the kernel trick which implicitly
maps the inputs into high-dimensional feature spaces. Normally the
separation is easier in higher-dimensional space. The hyperplane in the
higher-dimensional space is defined as the set of points whose dot
product with a vector in that space is constant. With the choice of the
hyperplane, the points x are mapped into the hyperplane by the relation:X
i

aikðxi; xÞ ¼ constant (19)

where kðxi; xÞ is a kernel function, ai represents the selected parameter
and xi is the test points. The kðxi; xÞmeasures the relative nearness of test
point x and the corresponding data base point xi and kðxi; xÞ increases
when x moves near to the point xi. Thus, SVM can easily discriminate the
categories.

Generally SVMs are helpful in text categorization, image classification
and biological sciences. A version of SVM for regression was proposed by
Fig. 7. Prediction comparison of the Rosenbrock function based on Kriging model and
GEK model [197].
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Drucker et al. [198] in 1996. The support vector regression (SVR) de-
pends on a subset of the sample points due to the fact that the cost
function doesn't care about the points that lie beyond the margin.
Another SVMmodel based on least squares method has been proposed by
Suykens and Vandewalle [199]. Within the research field relative to
turbomachinery, SVM was mainly applied for equipment fault detection
or diagnosis [200,201].
3.4. Stochastic optimization method

3.4.1. Particle swarm optimization
The urgent need for search methods capable of escaping local optima

has led to the development of non-traditional search algorithms. Tradi-
tional optimization methods iteratively search for the optimum on the
gradient information as will be discussed in Section 4. However, the final
solutions can depend on the initial solution and these methods easily get
stuck in a local optimum. More robust methods can be developed by
introducing probabilistic processes into the traditional algorithms. These
new methods are stochastic and iterative and are based on the individual
solutions being updated simultaneously. Simulated Annealing (SA),
Particle Swarm Optimization (PSO), GAs and EAs are typical stochastic
optimization methods.

In computer science, PSO is a computational method that optimizes a
problem by iteratively trying to improve a candidate solution with regard
to a given measure of quality. It solves a problem by having a population
of particles, and moving these particles around in the search-space ac-
cording to simple mathematical formula over the particle's position and
velocity. Each particle's movement is influenced by its local best known
positon, but is also guided toward the best known positions in the search-
space, which are updated as better positions. As a result, it is expected to
move the swarm toward the best solutions.

In PSO, a potential solution is called a particle. Each particle has two
representative parameters, i.e., the current position xi and the current
velocity vi. As for each particle, there exist the best position Pbest itself and
the best position for the whole swarm that has experienced Sbest . During
each generation, the velocity and position of each particle is updated
using the following formulas:

viðt þ 1Þ ¼ wviðtÞ þ c1r1ðPbestðtÞ � xiðtÞÞ þ c2r2ðSbestðtÞ � xiðtÞÞ (20)

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ (21)

The PSO algorithm was firstly introduced by Kennedy and Eberhart
[165]. The motivation of this achievement was to simulate the simplified
animal social behaviors such as the bird flocking. Generally it is believed
that PSO has high efficiency of convergence and is one of the most
promising algorithms in the global optimization methods. Therefore,
great effort has been employed on PSO in the optimization applica-
tion [166–169].

However, the standard PSO always traps into local optimal solution or
converges to precocity. Some algorithms have been devised to make the
main coefficients become more suitable to the optimization issue, for
example, algorithm with linear inertia weight (PSO-CIV) [170], method
with dynamic inertia weight and elite velocity (PSO-DIV) [171], algo-
rithmwith convergence coefficients (PSO-C) [172] and PSOwith particle
generator (PSO-PG) [173]. In addition, some researchers focus on the
combination of different intelligent optimization algorithms into PSO to
improve results quality such as SA-PSO [174], GA-PSO [175] and Ant
Colony Optimization (ACO)-PSO [176].

Recently, PSO has been gradually introduced into the optimization
field of turbomachinery due to its more efficient computation cost than
EA. Safari et al. [177] proposed the metamodel guided particle swarm
optimization (MGPSO) algorithm in which a major modification to an
original PSO was made by using all previously evaluated points aiming to
increase the computational efficiency. The developed algorithmwas then
used to optimize the aerodynamic design of a gas turbine compressor
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blade airfoil and the results illustrated the MGPSO's capability to achieve
more accurate results with a considerably smaller number of function
evaluations. Duan et al. [178] utilized PSO to optimize the NASA Rotor
37 and the peak efficiency was improved by 1.36% with pressure ratio
enhanced by 0.26 points. In Ref. [179], Bahrani used PSO to maximize
the isentropic efficiency of NASA Rotor 67, almost improved by 1.9
points while the maximum strain of the blade did not exceed the allowed
strain. An efficient automated optimization of radial turbine meridional
profiles using standard PSO algorithm has been presented by Tsalicoglou
and Phillipsen [180]. Song et al. [181] improved the PSO algorithm
based on adaptive control of particles, parameters and population di-
versity to optimize a large-turning tandem blade. Optimization results
illustrated that the improved PSO method obviously reduced the opti-
mization cost with the total pressure loss decreased by 40.4%.

Generally PSO is easier to implement and shows a faster convergence
speed than traditional EAs. However, as mentioned by Ratnaweera
[182], the major drawback of PSO is its convergence capability to local
optima. Thus, PSO has been improved with the following four aspects:

1) The modification of population diversity. The main factor that makes
PSO converge to local optima is the lack of the population diversity.
Diversity control can be accomplished by preventing too many par-
ticles from gathering in a region with adaptively choosing neigh-
borhood [183,184].

2) Improvement of population topology. The population topology
significantly determines the way to share information among parti-
cles. Both static and dynamic topology techniques were proposed by
researchers. PSO with ring neighborhood and Von Neuman neigh-
borhood was tested in Ref. [185]. Suganthan [186] proposed PSO
with dynamic topology, where the topology begins with ring neigh-
borhood and the neighborhood number increased until the model is
reached.

3) Hybrid PSO. As mentioned above, some researchers focus on the
combination of different intelligent optimization algorithms into PSO
to improve results quality such as PSO with differential evolution
(PSO-DE) [187], SA-PSO [174], GA-PSO [175] and ACO-PSO [176].

4) PSO with parameter control. Main coefficients become more suitable
to the optimization issue, for example, algorithm with linear inertia
weight (PSO-CIV) [170], method with dynamic inertia weight and
elite velocity (PSO-DIV) [171], algorithm with convergence co-
efficients (PSO-C) [172] and PSO with particle generator (PSO-PG)
[173].

3.4.2. Simulated annealing
The simulated annealing (SA) search uses a probabilistic rule for

accepting a new current best solution. The probability of acceptance of a
worse solution is proportional to the difference in the fitness or cost
between the current best solution and the new competitor normalized
through a parameter called the temperature T which gradually decreases
during the process. SA is able to escape from local optimums by accepting
inferior solutions [72]. The term “annealing” refers to the process in
which a solid material is first heated and then allowed to cool by slowly
reducing the temperature. When the solid part is cooled too quickly, it
will not reach the global minimum state of its potential energy function.
In nature, the energy states of a system follow the so-called Boltzman
probability distribution. The basic idea is that a system in thermal
equilibrium at temperature T has its energy probability distribution
among various energy states. The simulation of the annealing is regarded
as an approach that found out a minimization of a function of large
number of variables to the statistical mechanics of equilibration of the
mathematically equivalent artificial multiatomic system.

SA was invented by Kirckpatrick [188] who generalized the
Metropolis Monte Carlo integration algorithm in order to handle non-
convex cost functions arising in a variety of problems, e.g. finding the
optimal wiring for a densely wired computer chip. Then SA has been
widely used in the optimization applications for turbomachinery. Tong
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and Feng [189] used multi-objective optimizations for the transonic
turbine cascades with SA method. Tiow et al. [190] explored to seek the
optimal target distribution of turbomachinery cascades by using SA with
inverse design methodology. Pierret and Braembussche [191] described
a knowledge method for the automatic design of more efficient turbine
blades by means of SA and the results showed that both the aerodynamic
and mechanical constraints were satisfied with higher efficiency. Other
applications of SA algorithm for the optimization of turbomachinery
were also shown in Refs. [79,91]. Some comprehensive overviews about
SA were presented in Refs. [192,193].

Totally, SA is a randomly search technique which exploits an analogy
between the way in which a metal cools and freezes into a minimum
energy crystalline structure and the search for a minimum in a more
general system. It has been proved that by carefully controlling the rate of
cooling of the temperature, SA can finally find the global optimum. The
following elements must be provided:

1) a representation of possible solutions
2) a generator of random changes in solutions
3) a means of evaluating the problem functions
4) an initial temperature and rules for lowering it as the search progress

The strengths of SA are that:

1) SA is a robust and general technique due to its ability to deal with
highly nonlinear models with chaotic and noisy constrains

2) It's easy to implement because of the flexibility for different nonlinear
optimization issues

3) It's amenable to parallel computation

However, the weakness of SA is as following:

1) There is a clear tradeoff between the quality of the solutions and the
time required to compute them

2) The tailoring work to account for different constraints and parameters
makes the algorithm much more delicate

3) The precision of the coefficient chosen in the implementation shows a
significant effect upon the final optimization results

3.4.3. Genetic algorithms
The GA was designed by Holland in the 70s and improved and made

famous by Goldberg [85]. The GA imitates natural processes of the
evolution of genes in a stochastic search for the optimal values, which
makes it different from other methods, such as the gradient-based
methods. The populations are encoded as binary codes, like chromo-
somes, in which each bit is called a gene and each population represents a
set of solutions to the problem. The offspring are generated through the
crossover, mutation and selection of chromosomes. The breeding process
is repeated iteratively until converging to a set of solutions, which are the
optimal results for the problem. The attraction of the GA is its sim-
ple algorithm.

The GA calculation has two main parts. One is the genetic operation
involving chromosome crossover and mutation, while the other part is
the evolution or reproduction selection using genetic operations that
imitate genetic inheritance to create a new generation called the
offspring. The evolution operation comes from Darwinian evolutionism
where a new generation is selected based on the fitness of the offspring.
In this work, the GA operations include selection, crossover and mutation
with the elitist strategy always used.

Selection imitates the creating of the next generations and the fitness
represents the weightings occupied by the population. The weightings
calculation is based on the Darwinian principle of reproduction and
survival of the fittest. An individual is probabilistically selected from the
population on the basis of its fitness and then the individual is copied,
without change, into the next generation of the population. The selection
is done in such a way that the better fitness is more likely to be selected.



Fig. 9. GA optimization framework.
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Crossover is the main procedure for chromosomal exchange in the GA
because the process relies on chromosomal crossover to achieve an
effective knowledge database. The crossover process combines the
characteristics of two chromosomes to generate an offspring. The number
of populations is determined by the crossover rate, which represents the
crossover probability of the population in each generation. When the
crossover rate is set too high, the possible search space becomes very
broad with time-consuming searches in suboptimal solution spaces. Fig. 8
shows an example of crossover where the information in the red chro-
mosomal is exchanged with that in the blue one.

Mutation plays a secondary role in the GA that complements the
crossover and selection procedures. When the population converges to a
local optimum, only mutations can give a chance to find a more optimal
solution. The determination of whether a mutation will occur is decided
by the mutation rate. If this rate is set too low, the potential optimal
population may be missed and only a suboptimal solution will be found.
However, if the rate is set too high, the historical inheritance from the
parents will disappear. Fig. 9 shows a typical GA optimization flowchart.

The GA population optimization method has many advantages for
multi-objective optimization problems. The multiple objective functions
are initially the sums of the weighting factors that finally form a single
objective function. Since this gives the optimal result, the designers have
no alternative optimization options since only one “best” solution is
obtained by the optimization which differs from normal engineering
practice. Moreover, the weights are difficult to set for different objectives
due to the lack of knowledge about the inner relations.

Multi-objective genetic algorithms based on the Pareto optimal
concept have also been used for optimization. They provide a set of non-
inferior solutions rather than one “best” solution. A multi-objective ge-
netic algorithm (MOGA) is preferred and an approximation model is
needed for turbomachinery aerodynamic optimization due to limited
computational resources. The Non-dominated sorting genetic algorithm
II (NSGA-II) has also been widely used for turbomachinery optimization.
The well-known NSGA-II was proposed by Deb et al. [80] is now one of
most widely used MOGAs since it provides excellent results compared
with other multi-objective genetic algorithms [82,83]. The individuals in
the first few generations are evaluated by CFD simulations to provide the
initial approximation of the Pareto-optimal front. Then, an ANN trained
by the existing points is used to predict the objective in the remaining
generations of each segment. The same sequence is then implemented in
the following segments. The locations of the training samples in the
segments approach the Pareto-optimal front and the neural network
approximation accuracy is improved. This coarse-to-fine strategy will
lead to the Pareto-optimal front.

GAs have been widely used to optimize turbomachinery designs
[13,63,77,84,87–89,92–94]. Demeulenaere and Hirsch [61] presented a
methodology to evaluate successive designs using an ANN instead of a
flow solver. The ANN accuracy was based on design examples in a
database. The commercial optimization framework Fine/Design 3D also
uses this idea [86]. The advantages of GAs are:
Fig. 8. Example of chromosomal exchange [18].
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1) GAs are robust and can capture the global optimal solution without
being trapped to local optima.

2) GAs can easily be used to build a multi-objective optimization
framework using parallel computations.

3) GAs do not need gradient information, so they are independent of the
objective function.

3.4.4. Evolutionary algorithms
Evolutionary Algorithms (EAs) are mainly based on a GA, Evolution

Strategy (ES) and Evolutionary Programming with GA and ES s the two
most widely. EAs mimic the mechanics of natural selection and natural
genetics with a biological population evolving over generations to adapt
to an environment. EAs start with a random population of candidates
(chromosomes) with both the objective and constraint functions evalu-
ated for all of them. A metric (fitness) is assigned to each candidate based
on the objective function and constraint violations. A penalty is added to
infeasible candidates so that all infeasible solutions have a worse fitness
than the feasible solutions.

Typically, EAs involve the three operators for selection, crossover,
and mutation, similar to the GAs. The primary purpose of the selection
operator is to make duplicates of good candidates and eliminate bad
candidates in a population while normally keeping the population size
constant [80] through tournament selection, proportionate selection, and
ranking selection. For single objective optimization problems, the
ranking is based on the candidate fitness. For multi-objective optimiza-
tion problems, the ranking can be based on Fonseca's non-dominated
ranking method [95] in which an individual's rank is equal to the num-
ber of individuals in the present generation who are better than the
corresponding individual in all the objective functions. After ranking, the
N best candidates, which is the same size as the initial population, are
chosen from both the current and previous generations and then placed
in the mating pool. The elitist strategy [96] is often used to ensure a
monotonic improvement in the EA, in which some of the best individuals
are copied directly into the next generation without applying any
evolutionary operators. Various EAs have been used to solve multi-
objective optimization problems, for example, Fonseca and Fleming's
MOGA [95], Srinivas and Deb's NSGA [97], Deb et al.’s NSGA-II [80,81]
and Horn et al.’s NPGA [98]. There are several excellent review papers
[99,100,101,105,158,159] about EAs for multi-objective optimiza-
tion problems.

EAs have been successfully applied to aerodynamic design optimi-
zation problems for turbomachinery because of their ease of use, broad
applicability, and global perspective. For example, Oyama et al. [102]
used an EA for their redesign of the NASA Rotor67 transonic compressor
blade. Benini [83] used an EA to improve the performance of the NASA
rotor37 blade. Oyama and Liou [103] and Lian et al. [55,104] utilized
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EAs to redesign rocket turbo pumps. Buche et al. [71] built an automated,
multi-disciplinary optimization procedure for the design of subsonic gas
turbine compressor blades based on the EA. Dennis et al. [106] optimized
an airfoil cascade row to simultaneously minimize the total pressure loss,
maximize the total aerodynamic loading, and minimize the number of
airfoils using an EA. Another reason for these many applications is that
EAs are particularly suitable for multi-objective optimization problems,
which are often encountered in aerospace designs. For example, in the
turbo pump design problem, the objective was to maximize the total head
rise and to minimize the input power. Unlike a single objective optimi-
zation problem, a multi-objective optimization problem does not have
such an optimal solution that is better than others for all the objectives.
Instead, one expects a set of compromise solutions, each of which is
better than the others in one objective but is worse in the other
objectives.

These solutions are largely known as non-dominated solutions or
Pareto-optimal solutions. When dealing with multi-objective optimiza-
tion problems, classical methods, such as the gradient-based methods,
usually convert the multi-objective problem into multiple single-
objective problems by introducing parameters such as weight vectors.
In such approaches, each optimal solution is associated with a particular
vector. To find another Pareto-optimal solution, one has to choose a
different weight vector and again solve the resulting single objective
optimization problem. However, the EA's population approach can be
used to equally emphasize all non-dominated solutions in a population
and to preserve a diverse set of non-dominated solutions using a niche-
preserving operator. Consequently, EAs eliminate the need for
choosing different parameters and can find as many Pareto-optimal so-
lutions as possible in one run.

Although the EAs are powerful optimization tools, they suffer from
slow convergence speed due to the lack of the gradient information. As a
result, the whole process usually needs a tremendous amount of
computing resources. To address this issue, researchers [104,107,108]
have proposed hybridized stochastic EAs that are combined with deter-
ministic gradient-based methods. The idea is to resort to a gradient-based
method whenever the EA convergence rate slows. This strategy takes
advantage of the fast convergence of the gradient-based methods. Fig. 10
shows the time cost advantage of the hybrid method for high-
dimensional problems.
3.5. Remarks

As an important part of the optimization process, the geometric
parameterization defines the design variables linked directly to the
constraints, while eliminating unimportant ones. Turbomachinery
Fig. 10. Comparison of a standard GA with a hybrid method in terms of the number of
function evaluations [104].
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optimization is always based on a multi-section blade parameterization
based on Bezier, B-spine or NURBS curves. The recent developed fine-
tuned designs capture a high-fidelity model of the geometry with a
limited amount of design variables, so these methods deserve
further study.

The DOE method explores the design space by sampling to provide
the maximum amount of information with the minimum number of
design experiments to reduce the computational costs. Various experi-
mental design methods have been proposed, for example, the CCD, D-
optimal, and LHD methods. However, for computation design experi-
ments, in which the systematic error is larger than the random error, the
CCD and D-optimality designs are inefficient or even inappropriate. LHD
is a popular modern DOE method for turbomachinery optimization that
uses space-filling designs based on stratified sampling rather than
concentrating the designs on the boundary, thus ensuring that each input
variable is represented over all of their range while still being less
computationally intensive. More “intelligent” sampling schemes using
iterative, adaptive and progressive sampling processes should be devel-
oped to further advance these sampling techniques.

Despite continual advances in computing power, the costs of the
computationally intensive optimization processes are still significant. In
the past three decades, surrogate models and approximation-based
optimization methods have attracted much attention. Four types of sur-
rogate models are widely used for the global optimization of turboma-
chinery flows, the polynomial RSM, artificial neural networks (BPNN and
RBNN) and the Kriging method. There is no agreement on whichmodel is
superior. Some studies [20,24,28,36,37,39,40,43,127] have shown that
polynomial response surfaces are better for approximations of lower-
order nonlinear problems, while Kriging models are better for lower-
order nonlinear problems in high dimensional design spaces and neural
network are better for higher-order nonlinear problems. Among these
models, the Kriging model and RBNN give the best approximations of the
exact functions. In addition, unlike neural networks, Kriging models are
directly coupled with the database. In addition, neural networks are
rather complex due to their large number of training weights. In addition,
the multiple surrogate model, which is constructed by weighting various
average surrogate models, in general give smaller errors than the sur-
rogate model with much more robustness [38,39,41]. Further research is
needed to show how to build surrogate models for large problems, how to
develop more flexible and generic metamodeling approaches and how to
eliminate the uncertainty in surrogate models.

SA, EAs and GAs are both widely used for turbomachinery optimi-
zation. The first generation of multi-objective EAs/GAs included the Non-
dominated Sorting Genetic Algorithms (NSGA), the Niches-Pareto Ge-
netic Algorithm (NPGA), and the Multi-Objective Genetic Algorithm
(MOGA). The second generation included the Strength Pareto Evolu-
tionary Algorithm (SPEA), the Strength Pareto Evolutionary Algorithm 2
(SPEA2), the Pareto Archived Evolution Strategy (PAES) and the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). Further research
should focus on developing hybridized optimization algorithms [101],
self-adaptation parameter control [128], reducing the number of needed
fitness function evaluations [129], developing methods that are inde-
pendent of the platform and programming language [130], developing
fast methods for a large number of objectives [131], and uncertainty
quantification [132]. Recently PSO has been gradually introduced in the
optimization field of turbomachinery due to its faster convergence speed
and resulting relatively lower computation cost than EAs. However, the
major drawback of PSO is easily convergence capability to local optima.
Advanced PSOs should be improved based on adaptive control of parti-
cles, parameters, population diversity or hybrid combination with other
optimization algorithms.

4. Optimization using gradient-based methods

The gradient-based methods include the finite difference method, the
linearized method, and the adjoint method depending on how the
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gradients are calculated. An essential part of the gradient-based optimi-
zation methods is to have a fast, accurate way to calculate the gradient
information because this is the most time-consuming part of the whole
design process. The traditional gradient-based method depends on the
step size and the time cost is usually proportional to the number of design
variables; thus, this method is not good for a large number of design
variables. The adjoint method does not have this well-known disadvan-
tage of the traditional method but can quickly calculate the derivatives of
the objective function with respect to the design variables independent of
the number of design variables.

4.1. Traditional gradient-based method

A typical constrained minimization or maximization problem entails
a group of physical quantities that are the design variables and another
group of constant quantities called problem parameters. In aerodynamic
applications, the design variables and the problem parameters are related
to the geometry and the flow field. In most optimization procedures, the
dominant contributor to the computational cost is the calculation of the
derivatives of the objective function and the constraints with respect to
the design variables. These derivatives are called the sensitivity co-
efficients [109]. Therefore, any optimization procedure must have an
efficient numerical or analytical method to determine the sensitivity
coefficients and efficient computational methods to solve the resulting
equations. The traditional gradient-based methods were based on the
finite difference approach and the linearized method [133].

The straightforward idea is to calculate the derivative as a finite
difference approximation. For example,

dF
dx

¼ Fðxþ hÞ � FðxÞ
h

(22)

An obvious shortcoming of this idea is the uncertainty in the choice of
the perturbation step size, h. Also, this approach necessitates solving for
the flow field for each perturbed design variable which is particularly
expensive, especially for a large number of design variables and many
flow fields.

4.2. Adjoint method

Assume that the object function, I, in an aerodynamic design opti-
mization problem is a function of the flow variable vector, U, and a
design variable, α, as:

I ¼ IðU; αÞ (23)

Then, the relationship between the flow variable and the design
variable is determined through the flow equation,

RðU; αÞ ¼ 0 (24)

The gradient of the objective function relative to the design variable is

dI
dα

¼ ∂I
∂α

þ ∂I
∂U

∂U
∂α

(25)

where ∂I
∂α and

∂I
∂U are to be calculated. However, the calculation of the flow

variable sensitivity, ∂U∂α, involves solving the flow equations,

∂R
∂α

þ ∂R
∂U

∂U
∂α

¼ 0 (26)

This linearized equation also depends on the design variable, which
means that each design variable requires one solution of the flow equa-
tion. The key is to find a way to decouple the influence of the design
variables on the objective function by means of the flow sensitivity, i.e.
eliminating the explicit dependency of the objective function sensitivity
on the flow variable sensitivity, ∂U

∂α.
To achieve this goal, the right side of the flow equation is multiplied
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by the adjoint factor, λ, and the product is subtracted from the gradient
expression as:

dI
dα

¼ ∂I
∂α

þ ∂I
∂U

∂U
∂α

� λT
�
∂R
∂α

þ ∂R
∂U

∂U
∂α

�
(27)

This expression can be regrouped as:

dI
dα

¼ ∂I
∂α

� λT
∂R
∂α

þ
�
∂I
∂U

� λT
∂R
∂U

�
∂U
∂α

(28)

If the adjoint equation is zero:

∂I
∂U

� λT
∂R
∂U

¼ 0 (29)

Then the gradient is given by:

dI
dα

¼ ∂I
∂α

� λT
∂R
∂α

(30)

This expression no longer depends on the flow variable sensitivity.
Furthermore, the adjoint equation (26) does not depend on any design
variable. This implies that the gradient of a scalar objective function
relative to all the design variables can be obtained by solving only two
sets of equations, the flow equation in Eq. (21) and the adjoint equation
in Eq. (26). Once the flow and adjoint solutions are obtained, these can be
substituted into the new gradient expression in Eq. (27) to efficiently
calculate the gradients.

The adjoint algorithm for aerodynamic design optimization was
pioneered by Jameson [134]. The two main types of adjoint methods are
the continuous adjoint method and the discrete adjoint method, based on
the way the adjoint system is formed. For the continuous method, the
nonlinear flow equations are first linearized with respect to one design
variable. Then, the adjoint equations are derived from the linearized flow
equations. However, for the discrete adjoint method, the flow equations
are first discretized, followed by the linearization and adjoint formula-
tion. Fig. 11 shows the difference between the discrete adjoint method
and the continuous method.

If all of the solutions are sufficiently smooth, all the approaches
should be consistent and converge to the correct gradient of the objective
function [135]. However, there are important conceptual differences
between the different approaches. The advantages and disadvantages of
the two methods are as follows:

1) The discrete adjoint method provides the exact gradient of the
objective function. Furthermore, the programming accuracy can be
easily checked.

2) The discrete adjoint program is quite straightforward.
3) The physical meaning of the continuous adjoint method is clearer.
4) The continuous adjoint method requires less memory and the pro-

gram structure is simpler.
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There have been increasing efforts to apply the adjoint method to
turbomachinery blading aerodynamics. Fig. 12 shows a flow chart of the
optimization process based on the adjoint method. Arens et al. [116]
optimized the turbine blades by using adjoint approach and the 2D Euler
equations. Li et al. [117] combined the continuous adjoint method with
the quasi-Newton method to optimize the 2D aerodynamic shape design
of a turbine blade. The continuous adjoint method was also used for the
aerodynamic design of cascades in a 2D inviscid, compressible flow
[118]. Wu et al. [119] used the adjoint method to minimize the entropy
generation of a 3D turbine stator blade. Papadimitriou and Giannakoglou
[124] used the continuous adjoint method to improve the aerodynamic
performance of a 3D peripheral compressor blade cascade. Flora and Hall
[120] used a discrete adjoint solver to calculate the sensitivity of an
unsteady inviscid flow in a turbomachine. Thomas et al. [121] presented
a discrete adjoint approach for computing steady and unsteady aero-
dynamic design sensitivities for compressible viscous flows with the aid
of the advanced automatic differentiation software tool known as
Transformation of Algorithms in Fortran (TAF). Luo et al. [112] used the
adjoint method to optimize a turbine blade, including the imposition of
the appropriate boundary conditions for the adjoint Euler equations. Li
et al. [122] used the adjoint method and an N-S solver to optimize tur-
bine blades in a 2D viscous flow. Walther and Nadarajah [123] described
a fully automatic gradient-based aerodynamic shape optimization
method for a multi-row turbine including the derivation of flow-
consistent adjoint boundary conditions, a discrete adjoint mixing plane
formulation and an automatic grid perturbation scheme using RBFs. Luo
et al. [145] used a viscous continuous adjoint method to optimize a low-
aspect-ratio turbine blade row through endwall contouring. Lei and Jiang
[146] applied the continuous adjoint method to optimize the aero-
dynamic shape of high pressure turbine blades based on the S2 surface
and the Euler governing equations. Zamboni et al. [163] used an adjoint
RANS solver to study the effect of geometric non-conformance on the
efficiency and flow capacity of turbine blades.

Although there have been many studies using adjoint methods, they
mainly focused on the optimization of a single row. Methods are also
needed to apply the adjoint method to multi-stage machines with in-
formation transfer through the rotor-stator interface. Wang and He
[110,[111] proposed an adjoint mixing-plane treatment that can be used
for aerodynamic shape design optimization of multiple turbomachinery.
The gradient results given by the mixing-plane treatment compare well
with finite difference results demonstrating the validity of the adjoint
mixing-plane treatment and the benefit of using it in a multi-blade row
environment. This method was also used by Jing et al. [114]. To further
increase the aerothermal and aero-elastic performance in modern blad-
ing designs, He and Wang [113] proposed a discrete adjoint method for
concurrent blading aerodynamic and aero-elastic design optimizations in
which a nonlinear harmonic phase solution method is used to solve the
Fig. 12. Flow chart for adjoint-based optimization [136].
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unsteady RANS equations. Alternatively, the unsteady adjoint-based
optimization method can be used to reduce the effect of the interface
for multistage configurations, [115].

4.3. Remarks

Over the past two decades, the adjoint approach has been extensively
used for external flow problems. However, due to the complexity of
formulating the adjoint equations and the challenge of defining the
adjoint boundary conditions, the adjoint method has not been often
applied to internal flows. There is currently much research on applying
the adjoint approach to gradient-based optimization of turbomachinery.
Most of these publications described the optimization of only isolated
blade row configurations. The designs produced by concurrent optimi-
zation are generally better than those based on isolated optimizations.
The difficulties are the treatment of the boundaries and the rotor-stator
fluxes. Conservative adjoint mixing planes have been proposed to
address this issue by many researchers [110,111,123,137–139]. Further
research is also needed on the effects of uncertainties on the turboma-
chinery performance. Some recent studies have analyzed Uncertainty
Quantification (UQ) and robust optimization techniques [140,141,142].

Further research is also needed on adjoint methods for multiple ob-
jectives and unsteady optimization problems. Due to the low computa-
tional costs of multi-variable optimization problems, the adjoint method
should be used for concurrent multi-disciplinary unsteady optimization
problems, such as aero-thermal, aero-elastic, or aero-acoustic problems
The adjoint method can also be used to refine the mesh topology to
improve the accuracy of numerical simulations [143,144]. Essentially,
the adjoint method is based on the gradient information and will even-
tually approach the local optimum. Thus, another important issue is how
to couple global optimization with the adjoint method. Recently, Tang
et al. [164] showed that the gradient-enhanced response surface model is
especially advantageous for finding the global optimum for multi-
parameter design optimization cases where the adjoint gradient infor-
mation is introduced in the construction of the response surface.

5. Data mining

A multi-objective optimization problem can be converted into a
single-objective problem by introducing weight factors to get one opti-
mum solution. However, in practical applications, the weight factors are
difficult to specify for different objects with variable dimensions.
Therefore, real-world design processes do not obtain exactly optimal
solutions. For instance, the peak efficiency of a compressor configuration
can be found that eliminates the losses by changing the blade shape in the
optimization algorithm. However, these changes will also modify the
stable operating range and the mechanical strength which should also be
taken into account.

The Pareto-optimal solutions of a multi-objective problem rather than
a single result of a converted single-objective optimization problem can
provide useful information such as which parameters are dependent or
independent, which design parameters are more sensitive to the final
result, which objective functions are independent or correlative, and so
on. Aerodynamic shape optimization usually results in hundreds or even
thousands of Pareto-optimal solutions. Fig. 13 shows the design candi-
dates and the Pareto-optimal solution of an aerodynamic transonic airfoil
shape design [101]. Jeong et al. [147] proposed the “multi-objective
design exploration (MODE)” concept with a multi-objective evolutionary
algorithm used to find the Pareto-optimal solutions and a data mining
method used to extract the design information from the Pareto-optimal
solutions. This information is very useful for designers because it pro-
vides meaningful guidance for the real-world design process.

Various methods have been proposed by many researchers to un-
derstand the Pareto-optimal solutions, such as the star coordinate
method [148], scatter-plot matrix [149,150], value path method [151],
analysis of variance (ANOVA) [147,155,157], self-organizing map



Fig. 13. Distributions of the Pareto-optimal solutions and other design candidates [101]. Fig. 14. ANOVA results [147].

Fig. 15. Relationship between the best-matching unit and its neighbors in SOM [147].
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(SOM) [147,152,155,157], fuzzy multiple discriminant analysis (FMDA)
[153], and proper orthogonal decomposition (POD) [154].

5.1. ANOVA

ANOVA can identify not only the quantitative effect of the design
variable but also the effect of interactions between design variables on
the objective functions. The total variance of the objective results can be
decomposed into the variance components due to the design variables.
For example, the total mean, u, and the variance of the objective func-
tions are:

u ¼ ∫…∫ yðx1;……; xnÞdx1…dxn (31)

σ2 ¼ ∫…∫ ½yðx1;……; xnÞ � u�2dx1…dxn (32)

where yðx1;……; xnÞ is the objective function and x is the design variable
with n samples. The main effect of a single variable, uðxiÞ, and the in-
teractions variables, uðxi; xjÞ, are:

uðxiÞ ¼ ∫…∫ yðx1;……; xnÞdx1…dxi�1dxiþ1…dxn � u (33)

u
�
xi; xj

� ¼ ∫…∫ yðx1;……; xnÞdx1…dxi�1dxiþ1…dxj�1dxjþ1…dxn � uðxiÞ
� u

�
xj
�� u

(34)

Thus, the variance due to design variable, xi, is:

σ2
i ¼ ∫ ½uðxiÞ�2dxi (35)

The proportion of the variance, σ2
i , due to total variance, σ2, is:

σ2
i

σ2 ¼
∫ ½uðxiÞ�2dxi

∫…∫ ½yðx1;……; xnÞ � u�2dx1…dxn
(36)

Fig. 14 shows the variances of the design variable and their in-
teractions for four objective functions as pie charts. The important
parameter and which parameter is not sensitive to the objective function
can be easily seen.

5.2. SOM

A Self-Organizing Map (SOM) uses a projection algorithm with clus-
tering from high to low dimensions. As a result, one can qualitatively
visualize the trade-offs and the relations between the design variables
and the objective functions.

SOM uses unsupervised neural networks with the weights between
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the input vector and the neuron array changed to show the features of the
high-dimensional data on a low-dimensional map. If two samples are
close in the original space, the response of two neighboring neurons in
the low-dimensional space will also be close. The SOM learning algo-
rithm begins by finding the best-matching unit. Once the best-matching
unit is determined, the weights are adjusted not only for the best-
matching unit but also for its neighbors. Fig. 15 shows the original to-
pology represented by the solid line with the weight vectors shown by the
black dots. The best-matching unit is closest to the input vector. The
modified topology is represented by dashed lines with white dots for its
weight vectors. Finally, the weight vectors become smooth globally with
repeated iterations. Thus, the sequence of closely spaced vectors in the
original space results in a sequence of corresponding neighboring neu-
rons in the 2D map.

Fig. 16 shows the SOM result for four objective functions generated
with 102 non-dominated solutions. The map is classified into 10 clusters
based on the similarities. Fig. 16a and b have similar color patterns,
which means that these two objective functions are not in a trade-off
relation. However, maximum F3 and F4 are not located at the same
location as the maximum F1 and F2, thus, there are trade-offs.

5.3. Scatter plot matrix

A scatter plot is a mathematical diagram in Cartesian coordinates that
displays the values for a set of data as a collection of points each having
the value of one variable determining the position on the horizontal axis
while the other variable determines the position on the vertical axis.
Fig. 17 shows the scatter plot matrix containing all the pairwise scatter
plots of the design parameters and objectives in matrix format. The figure



Fig. 16. SOM colored by the objective functions [147].

Fig. 17. Analysis using a scatter plot matrix [150].

Fig. 18. Energy ratio of the top 10 principal models for an airfoil shape [154].

Fig. 19. Shape of the maximum lift-to-drag ratio airfoil design and the orthogonal base
vectors of the first four models of the airfoil shape [154].
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clearly shows the strong correlation among objectives.
5.4. POD

A POD is a statistical method that can extract the dominant features
out of the data by decomposing the data into a set of orthogonal base
vectors with deceasing importance. This method can be used to identify
the more important design parameters by solving for the eigenvectors of
the principle models [154]. The data can be decomposed into a mean
vector and the fluctuation vector from the mean vector to maximize the
variance. The eigenvectors are determined so that the energy is maxi-
mized. Fig. 18 shows the first 10 principal orthogonal base vectors for the
optimization of an airfoil shape [154]. The maximum lift-to-drag airfoil
shapes for the four main orthogonal base vectors are shown in Fig. 19.
The major differences occur near the leading edge, on the upper suction
surfaces and on the lower pressure surface. The second base vectors show
that the trailing edge thickness is reduced.
5.5. Remarks

Design exploration methods combining design optimization and data
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mining techniques have been used to facilitate knowledge-oriented
design optimization. Many data mining methods can be utilized to
identify the key information for the designers and to improve the work
efficiency during the design process. The analysis of variance method can
be used to determine the dominant variables and the interaction effects
between the design variables, which are used in the latter data mining
process. Self-organizing maps and other visualization methods can be
used to find qualitative lower-order correlations, particularly trade-off
relationships between the objective functions. In addition, Sugimura
[156] proposed a method that uses association rules after obtaining the
proper rule length by rough set theory. This method was shown to be
superior to the Taguchi method for multi-objective design. Future de-
velopments in data mining techniques will generally be directed at
refining the algorithms or their integration with existing methods.

6. Discussion

Three actual optimization examples are shown here, the first one for
the compressor design, the second one for the turbine case and the last
one for the data mining technique. A comprehensive discussion about the
further development of design optimization methods for the turboma-
chinery design is conducted in the end.
6.1. Example 1: multi-objective design of NASA Rotor 67

The NASA Rotor 67 is a transonic axial rotor which is embedded in
the first stage of a two-stage fan developed by NASA. The solid picture is
shown in Fig. 20. Some key parameters of this configuration are sum-
marized in Table 1. Lian and Liou [203] presented a representative work
on multi-objective and multidisciplinary design optimization for NASA



Fig. 20. Solid picture of NASA Rotor 67 [206].

Table 1
Some key design parameters of the NASA Rotor 67.

Parameter Value

Inlet hub-tip diameter ratio 0.375
Outlet hub-tip diameter ratio 0.478
Hub solidity 3.11
Tip solidity 1.29
Tip solidity 1.3
Inlet tip diameter 514 mm
Outlet tip diameter 485 mm
Number of blade 22
Inlet Reynolds number 1.797Eþ06
Designed tip speed 429 m/s
Designed mass flow rate 33.25 kg/s
Designed stage pressure ratio 1.63
Designed relative inlet tip Mach number 1.38
Material Ti-6Al-4V

Fig. 21. Convergence history of optimization [101].

Fig. 22. Airfoil shape comparison between the Pareto Front case and the baseline at the
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Rotor 67 by using MOGA in conjunction with quadratic response surface
model. The objective functions are shown as followed:

maximize


Poutlet=Pinlet

�
(37)

minimize ðWbladeÞ (38)

subject to
j _m� _mbaselinej

_mbaseline
� 0:5% (39)

Here the optimized blade geometry was defined by employing per-
turbations on baseline blade along the span (hub, 31% span, 62% span,
and tip). Each 2D airfoil profile was parameterized by a mean camber line
and thickness distributions with third-order B-spline curves. The camber
is determined by three variables while the thickness distributions by five
variables. Thus, within the optimization process, 32 design variables
were selected and 1024 design points were sampled based on the LHD
method. These points were evaluated by the 3D CFD solver TRAF3D and
the blade weight was computed by integrating the blade volume. The
response surface was then built and its accuracy was evaluated by sta-
tistical measures. The population size of the MOGA was set as 320.
Finally the Pareto Fronts cases were figured out and the representative
solutions were validated using the CFD solver. The convergence history
was shown in Fig. 21. The convergence was improved with an increase in
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the generation size.
The Pareto Front results contain 473 solutions, among which 16

representative points were verified with the CFD solver. Compared to the
prototype, all of the solutions increased the stage pressure ratio and
reduced the blade weight. As for the optimum cases, the pressure ratio
was maximally increased by 1.8%with the blade weight reduced by 5.4%
to the almost maximum possible extent. The geometry comparison of the
representative Pareto Front cases with the baseline blade was shown in
Fig. 22. The higher pressure ratio design has a larger camber but less
thickness than the prototype and the thinner airfoil leads to the blade
with a lighter weight. The similar trends occurred on the 50% and 90%
span. Fig. 23 shows the contours of the relative Mach number of the
maximal pressure deign at the 90% span from the hub. The relative Mach
number of the maximal pressure design was 1.48 and this is weaker than
the Mach number of 1.52 in the baseline design, which is beneficial for
decreasing the shock losses.

Meanwhile, the 3D pressure distributions on the suction surface of the
rotor blade were shown in Fig. 24. The difference between the maximal
pressure design and the Rotor 67 design was discussed here. A strong
passage shock occurs in the upper part of the rotor. The intensity of the
retrofitted passage shock was reduced in the central span part and thus
moved upstream. The resulting flow separation region was reduced due
to the weaker shock-boundary layer interaction which was validated in
10% span from the hub [203].



Fig. 23. Contours of the relative Mach number at the 90% span from the hub [101].

Fig. 24. 3D pressure distributions on the suction surface of the rotor blade [203].

Fig. 25. 3D streamlines on the suction surface of the rotor blade [203].
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Fig. 25. The reattachment flow appeared on the suction surface of the
rotor with maximal pressure ratio and this was also responsible for the
eliminated separation flows.
6.2. Example 2: optimization of turbine blade with adjoint method

Luo et al. [145] presented the application of a viscous continuous
adjoint method for the optimization of a turbine blade row by means of
the endwall contouring technique. Entropy production through the blade
row was used as the objective function. Within each optimization cycle,
the needed gradient information was obtained by only solving the flow
governing equations and the corresponding adjoint equations one time
regardless of the number of the input parameters. The cost function is
shown as following:

I ¼ sgen þ Λ
��β � β0

�� (40)

where sgen means the generated entropy, β0 represents the reference
mass-averaged flow turning of the turbine blade, β is the actual mass-
averaged flow turning and Λ is a selected coefficient. The perturbations
were added to the endwall contours in the form of a Fourier summation
of four harmonics in the pitchwise direction. The parameterization of the
contours is:

dz
�
x; sp

� ¼ X8

i¼1

biðxÞ
(X4

j¼1

�
V1ij sin



jπ
sp
so

�
þ V2ijgðxÞcos



jπ
sp
so

��

þ V3i

)
(41)

where sp means the pitch displacement, so is the local pitch, V1ij, V2ij and
V3i are the design parameters, biðxÞ represents eight bump functions that
are uniformly distributed from 10% axial chord upstream of the leading
edge to about 50% chord downstream of the trailing edge and gðxÞ is a
defined blending function. The convergence history within 33 optimi-
zation cycles is shown in Fig. 26. In this figure, the total pressure ratio is
increased by 0.2% and the adiabatic efficiency is increased by about
0.6%. Meanwhile, the produced exit flow angle is not larger than 0.04
deg when compared to the reference value.

The resulting 3D contoured endwall profile is shown in Fig. 27. A
convex bump occurs near the blade pressure surface and a concave
expansion occurs near the blade suction surface which leads to the
accelerated flows near the pressure surface and the decelerated flows
near the suction surface. Those effects are beneficial in reducing the
cross-passage pressure gradient. To validate this, the detailed contours of
Fig. 26. Convergence history of entropy and flow turning [145].



Fig. 27. Solid view of the 3D contoured endwall [145].
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streamwise vorticity and secondary kinetic energy on planes normal to
the axial flow direction located at the trailing edge are shown in Fig. 28.
As for the optimized blade row, both the strength and size of the passage
vortex and those of the wall-induced vortex are reduced. The secondary
loss of the optimized blade is decreased by about 36.4% when compared
to the prototype.
6.3. Example 3: date mining method

An automated 3D multi-objective optimization for a highly loaded
centrifugal compressor was presented by combining the multi-objective
evolutionary algorithm and data mining technique of self-organizing
map in Ref. [202]. The mean camber line and the thickness distribu-
tion of section profiles near the hub and shroud region were
Fig. 28. Contours of streamwise vorticity and secondary kin
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parameterized by NURBS. The impeller was optimized for maximizing
the adiabatic efficiency and total pressure ratio with constrains on the
average mass flow rate as following:

maximizeðdesigned adiabatic efficiencyÞ (42)

maximizeðdesigned total pressure ratioÞ (43)

subject to
�

_0:99 _mbaseline � mdesign � 1:01 _mbaseline

�
(44)

As for the optimization process, the population size and the maximum
generation are set to be 60 and 150 respectively. The Pareto Front cases
are shown in Fig. 29. The isentropic efficiency of Design A, Design B and
Design C is increased by 2.21%, 1.98% and 1.81%, respectively. Mean-
while, the total pressure ratio of Design A, Design B, and Design C is
increased by 6.9%, 9.2% and 11.49%, respectively. The mass flow rate
for all of the optimal Pareto Front cases meets the constraints mentioned
above. SOM method is then used to explore the design information from
the view of the optimization results. As shown in Fig. 30, the SOM
neutrons are connected to its adjacent neutrons by neighborhood relation
and are usually shown with hexagon topology. Here 1000 SOM neutrons
are used for the SOM training. The correlations between the objective
functions as well as the interactions among the design variables and
objective functions are analyzed. Fig. 30 shows the component maps of
the objective functions. It can be concluded that isentropic efficiency
obtains larger values in the upper part while the total pressure ratio gets
smaller values there. There exists a trade-off between the isentropic ef-
ficiency and total pressure ratio in high-loaded compressors.

The interaction among the design variables x7 and the objective
functions is visualized in Fig. 31 based on SOM-based scatterplots. As the
value of x7 increases, the isentropic efficiency increases while the total
etic energy on planes located at the trailing edge [145].



Fig. 29. Optimal Front solutions [202].

Fig. 30. Schematic map of SOM [202].

Fig. 31. SOM maps of isentropic efficiency, total pressure ratio and color coding (from left
to right) [202].
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pressure ratio decreases at the same time. The scatters are divided into
two groups as Group A and Group B. Group A corresponds to SOM
neutrons located in the upper part where the designs with higher isen-
tropic efficiency occurs. Likewise, the scatters in Group B represent de-
signs with lower isentropic efficiency but higher total pressure ratio.
6.4. Further developments of design optimization methods

All of the optimization results mentioned above validate the useful-
ness of the advanced optimization methods mentioned above in practical
engineering applications. Although much progress has been made in
turbomachinery designs by optimization methods, there are still signifi-
cant gaps between the numerical optimization results and engineering
applications. Information from papers published in this field and the
authors' own insights suggest the following gaps:

1) Methodological issues. Only two generations of evolutionary opti-
mization algorithms have been proposed [105] with the first gener-
ation characterized by the algorithm simplicity and lack of methods to
validate the algorithms and the second generation emphasizing the
efficiency at both the algorithmic level and the data structure level.
Current algorithms do not behave with multiple objectives (normally
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more than 3 or 4). In addition, gradient-based methods can be easily
trapped into local optimums due to the limitations of the methodol-
ogies themselves. The metamodel-based approaches are less attrac-
tive or even unworkable for large problems with the uncertainty in
metamodels creating big challenges for engineers [60]. Adjoint
methods are more effective, but they need to be able to transfer in-
formation through multi-row mixing planes and better approaches
are needed for multi-objective and global optimization problems to
meet practical application requirements.

2) Computational cost problems. Advanced optimization strategies
require extensive calculations and costs. For example, Large Eddy
Simulations (LES) or even Direct Numerical Simulations (DNS) are
preferred for capturing fine flow field details. In addition, more
design parameters and objective functions will lead to better opti-
mization results. Furthermore, much more information can be
recovered by data mining techniques to help designers determine the
optimal search route. Finally, practical engineering problems require
multidisciplinary optimization studies, concurrent multi-row opti-
mization, uncertainty quantification based optimization and unsteady
simulation based optimization methods that all require extensive
computational resources.

3) Understanding of the physical mechanisms. Although the optimiza-
tion methods strongly depend on the algorithms, the results also
depend on a thorough understanding of the physical mechanisms. For
example, compressor optimization designs always pursue higher peak
efficiencies with sufficient surge margin. Unfortunately, there is still
no consistent method for how to define the surge using numerical
simulations with many researchers still analyzing this question.
Physical mechanism-oriented optimization methods are urgently
needed with properly formed objective functions. Multidisciplinary
optimization studies need composite mechanisms that can be used to
reduce the design parameter ranges or increase the number of
ignorable factors.

4) Influence of manufacturing uncertainty. The manufacture tolerance
effect on the efficiency and flow capacity of the turbomachinery has
gradually attracted much more attention [132,163]. The tolerances
impact the manufacturing costs with tighter tolerances leading to
increased manufacturing complexity. Robust reliability-based design
optimization tools should provide not only the performance ratings
but also a confidence range for each variable that describes the effects
of uncertainties on the design process.

These needs then lead to some promising topics for future research:

1) The design variable parameterization should only include design
variables directly linked to the constraint such while excluding design
variables with little effect on the aerodynamic performance of the
shape. The parameterization method directly controls the number of
input parameters which then impacts the computational cost.
Advanced parameterization approaches are then needed to improve
the optimization results.

2) DOE methods explore the design spaces to provide the maximum
amount of information with the minimum number of design experi-
ments to further reduce the computational costs. More “intelligent”
sampling schemes with iterative, adaptive or progressive sampling
processes should be developed to improve the sampling techniques
[125,[126].

3) Surrogate models and approximation-based optimization methods
have attracted much attention. The multiple surrogate model, which
is constructed by weighting individual surrogate models, in general
gives lower errors with better robustness than single surrogate models
such as the polynomial RSM, the Kriging model and ANN [38,39].
Gradient information has recently been introduced into the surrogate
models to improve their convergence [164]. In addition, the surro-
gate model result should be coupled with the DOE method with the
preferred meta-model depending on the specific objective function.
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4) The GA and EA are both widely used to optimize turbomachinery
designs due to their better robustness, global optimal search abilities
and flexibility for multiple objectives. Some promising paths are hy-
bridized optimization algorithms [101], self-adaptation parameter
control [128], minimum number of needed fitness function evalua-
tions [129], algorithms that are independent of the platform and
programming language [130], larger numbers of objectives [131],
and uncertainty quantification [132].

5) Aerodynamic optimization involving gradient-based optimization
needs fast, accurate ways to calculate the gradient information. The
adjoint method is much faster than the finite difference method with
calculations of the derivatives of the objective function with respect
to the design variables that are fast and independent of the number of
design variables. Thus, multiple objective, concurrent, and unsteady
adjoint methods are needed, especially for multi-row global
optimizations.

6) The stochastic and gradient-based optimization methods have their
own advantages and disadvantages. Hybridization and automatic
switching between optimization platforms can provide significantly
improved performance at lower costs for turbomachinery designs. For
example, a global optimization method can be used to explore wider
parameter ranges in the preliminary turbomachinery design process,
with a more locally efficient gradient-based method used for the
subsequent 3D design process.

7) Pareto-optimal solutions of multi-objective design problems contain
huge amounts of data, so data mining methods are needed to extract
the design information. Current advances in data mining methods
generally involve improved algorithms or further integration with
existing methods.

7. Conclusions

This paper provides a general overview of recent developments for
optimizing turbomachinery designs. Many other methods have been used
with only the most significant methods mentioned here. This paper de-
scribes the basic turbomachinery optimization design framework, the
stochastic and gradient-based algorithms, DOE strategies, various sur-
rogate models, and data mining issues and their applications. The authors
also provide their own insights regarding the most important current
research trends and the future for this field. Some of the major conclu-
sions are:

1) The geometric parameterization is an important part of the shape
optimization procedure due to its direct relation to the number of
design variables. Turbomachinery design methods use multi-section
blade parameterization based on Bezier, B-spine or NURBS curves.
The parameterization should preferably include design variables
directly linked to the constraints, while excluding design variables
having little effect on the aerodynamics. The parameterization needs
to accurately model the geometry with a limited number of design
variables.

2) The DOE method selects conditions that cover the entire design space
to provide the maximum amount of information about the perfor-
mance with the minimum number of experiments to reduce the
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computational costs. Various experimental design methods have been
proposed including the CCD, D-optimal, and LHD methods for
compressor and turbine designs. The CCD and D-optimality methods
are inappropriate for computation design experiments where the
systematic error is larger than the random error. LHD is a popular
DOE optimization method for turbomachinery that fills the design
space based on stratified sampling rather than concentrating on the
boundary. More “intelligent” sampling schemes involving iterative,
adaptive or progressive sampling methods should be developed to
improve the sampling efficiency.

3) Computational power is increasing, but these optimization processes
are very computationally intensive. Surrogate models and
approximation-based optimization methods have attracted much
attention as faster optimization methods. The polynomial RSM, ANN
(mainly BPNN and RBNN), Kriging and GEK surrogate models have
been widely used for the global optimization of turbomachinery
flows. Polynomial response surfaces can be used for lower-order
nonlinear problems, Kriging models are better for lower-order
nonlinear problems in high dimensional design spaces and neural
networks are better for higher-order nonlinear problems. The multi-
ple surrogate model which is a weighted average of various surrogate
models provides better robustness with smaller errors than the indi-
vidual surrogate models. However, none of the surrogate models
perform well for large objective spaces. Advanced surrogate models
need to be integrated with improved smart DOE strategies for future
optimization methods.

4) SA, GA and EA algorithms are widely used for optimizing turboma-
chinery designs since they are more robust, give globally optimal
searches and can handle multiple objectives. More efficient stochastic
algorithms are needed that can model high dimensionality problems,
such as modified PSO, hybridized optimization algorithms, self-
adaptation parameter control, less fitness function evaluations, plat-
form and programming language independent models, models for
large numbers of objectives, and uncertainty quantifications.

5) The optimization of aerodynamic problems using gradient-based
optimization methods needs fast, accurate methods to calculate the
gradient information. The traditional gradient-based method needs
small step sizes, so the methods are expensive, especially for a large
number of design variables; thus, they are not good for large prob-
lems. The adjoint method does not have this limitation but uses a
much faster method to calculate the derivatives of the objective
function with respect to the design variables. Adjoint methods are
also needed for multi-objective, unsteady optimization problems with
global optimizing capabilities.

6) Data mining methods are used to extract valuable design information
from Pareto-optimal solutions for multi-objective problems. Various
methods are used to understand the Pareto-optimal solutions, such as
the star coordinate, scatter-plot matrix, value path, analysis of vari-
ance, self-organizing map, fuzzy multiple discriminant analysis,
proper orthogonal decomposition, decision tree, and rough set
methods. New developments in data mining methods focus on
improving the algorithms and integrating them with existing
methods.
Nomenclature

a Design variable
b(x) Bump function
dik The kth output of the ith sample
fs Standard sigmoid transfer function
gðxÞ Blending function
h Perturbation step size



Z. Li, X. Zheng Progress in Aerospace Sciences 93 (2017) 1–23
k The kth component
_m Mass flow rate
p Static pressure
sgen The generated entropy
so Local pitch
sp The pitch displacement
t Time step
u Total mean of the objective functions
vi Current velocity
wi Weight vector
xj Input vector
yik Corresponding approximated output value
y*i Value predicted by the RSM
R Correlation matrix
ACO Ant Colony Optimization
ANN Artificial Neural Network
ANOVA Analysis of Variation
BPNN Back Propagation Neural Network
CCD Central Composite Design
CFD Computational Fluid Dynamics
DE Differential Evolution
DNS Direct Numerical Simulation
DOE Design of Experiment
DIV Dynamic inertia weight and elite velocity
EA Evolutionary Algorithm
ES Evolution Strategy
FE Finite Element
FMDA Fuzzy Multiple Discriminant Analysis
GA Genetic Algorithms
GEK Gradient-Enhanced Kriging
LES Large Eddy Simulation
LHD Latin Hypercube Design
I Object function
MAM Midrange Approximation Method
MGPSO Metamodel Guided Particle Swarm Optimization
MLMS Moving Least-Squares Method and Sensitivity
MLP Multilayer Perceptron
MODE Multi-Objective Design Exploration
MOGA Multi-Objective Genetic Algorithm
NASA National Aeronautics and Space Administration
NPGA Niches-Pareto Genetic Algorithm
NSGA Non-dominated Sorting Genetic Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm II
NURBS Non-Uniform Rational B-Spine
NO Number of outputs
NS Number of samples
P Number of coefficients
PAES Pareto Archived Evolution Strategy
PG Particle Generator
POD Proper Orthogonal Decomposition
PRESS Predicted residual error sum of squares
PS Pressure surface
PSO Particle Swarm Optimization
Pbest The best position
Pt
1 Inlet total pressure

Pt
2 Outlet total pressure

RANS Reynolds-Averaged Navier-Stokes
RBDO Reliability-Based Design Optimization
RBF Radial Basis Function
RBNN Radial Basis Neural Networks
R2 Determination statistic
R2
adj The adjusted determination statistic

SA Simulating Annealing
SOM Self-Organizing Map
SS Suction Surface
19
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SST Shear Stress Transport
SVM Support vector machine
SVR Support vector regression
Sbest The best swarm experienced
TAF Transformation of Algorithms in Fortran
TRAF3D 3D Flow Solver
T Temperature
UQ Uncertainty Quantification
U Flow variable vector
V Flow velocity
2D Two-Dimensional
3D Three-Dimensional
λ Adjoint factor
σ Root mean square error
σE Response due to the error
σT Total response
σR Response due to the model
σ The mean variance of the objective functions
τ Clearance size
γ Blade row stagger angle
β Regression coefficients
β The actual mass-averaged flow turning
βo The reference mass-averaged flow turning of the turbine blade
ε Total error
η Isentropic efficiency
Λ Selected coefficient

Subscripts
1 Inlet of control volume
2 Outlet of control volume
adjusted Adjusted
baseline Baseline point
best Best
design Design point
E Error
gen Generated
i ith
j jth
k kth
o Outlet
p Pitch
R Response
s Sample
T Total

Superscripts
� Derivative
* Predicted value
þ Non-dimensional
_ Averaged
^ Predicted value
i ith
t Total
T Transpose
2 Square
�1 Inverse
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